THE LIMITED CEMENT UNIT-II, RAMAKRISHNAPURAM 24th National Award "Excellence in Energy Management 2023" 13th – 15th September 2023

160-5140

LEADER V.MADHUSUDANA RAO PLANT HEAD

THE KCPLIMITED

Team Members A.V.R.G.BHAVANARAYANA-DGM(QC) R.VARAPRASADA RAO- DGM(E&I) B. YOGESWAR-AGM(PROCESS)

About "The KCP Limited"

"Celebrating 82 years of success"

"Journey started with setting up of 800TCD sugar plant at Vuyyuru, krishna Dist. Andhra Pradesh by Sri.V.Ramakrishan Founder of KCP"

"India's first dry process cement plant was installed at Macherla by Humboldt AG, Germary"

"Hydel Power Division setup at Nekkarikallu, Andhra Pradesh on the Guntur Canal of Krishna river to generate 8 MW of power"

"Wind Power generating Unit setup at Uthumalai village in Tirunelveli District of Tamil Nadu"

"Cement Plant II line # 1 Commissioned at Ramakrishnapuram, Muktyala, Andhra Pradesh, Line # 2 commissioned in 2018 at the same location"

"Commissioning of 1.15 MW Solar at Muktyala Cement Plant, Ramakrishnapuram, Muktyala, Andhra Pradesh"

"Commissioning of 18MW Thermal Power Plant at Muktyala Cement Plant, Ramakrishnapuram, Muktyala, Andhra Pradesh"

""Cement Plant II line # 2 Commissioned at Ramakrishnapuram, Muktyala, Andhra Pradesh,

""Packing Terminal Unit " set up at Arakkonam, in Tamilnadu

GROUP COMPANIES OF KCP

THE K C P LIMITED, CEMENT UNIT-I MACHERLA – 0.8 MTPA

HEAVY ENGINEERING, THIRUVOTTIYUR

HYDEL POWER PLANT, NEKARIKALLU - 8.25 MW

HOTEL MERCURE

KCP, HYDERABAD

THIRUNELVELI

3.25 MW

MUKTYALA – 3.52 MTPA

UNIT MILESTONES

ACHIEVEMENTS BY STATE OF ART TECHNOLOGY

CONSISTENT QUALITY

kcp

EQUIPMENT

RE

ABILITY

CEMENT UNIT-II

Electrical & Thermal Energy Performance

KCP

Increase in Sp.Energy up to Pre-Clinkerisation due to Plant operated at low feed rate (power constraint)
 Increase in Overall Sp.Energy is due to introduction of high blain(350m2/Kg) premium products-Super Shrestaa & RHPC

SEC & SHC Values are combined for both Lines

Energy Performance in Last 3 years

CP

PRODUCT RATIO in % for FY 2022-23 OPC:PPC:RHPC:SS // 50:42:1:7

Ground partial quantity of OPC and RHPC in ball mills Fly ash absorption is less in PPC hence power increased (Non-availability of fly ash)

SECTION WISE ELECTRICAL ENERGY NATIONAL BENCHMARK VS ACHIEVED

Road map for achieving Target Electrical energy

Road map for achieving Target Thermal energy

Line-2 Cooler Extension 5 kcal/Kg Clinker

Long Term Projects on Energy Efficiency

S.No	Project	Estimated Investment, Rs. Crores	Target	Payback, Months
1	Line-1& 2 Preheater HR Aluminizing	1.8	2023	24
2	Coal Mill-2 Gas Ducting modification with Pre-Collector arrangement	0.2	2023	20
3	Installation of 14.0 MW Waste Heat Recovery for Line-1&2 Kiln	160.0	2024	60
4	Installation of 4x1.15 MW Solar Power Plant	20.0	2024	85
5	Line-1 Cooler Modification & Line-2 Cooler extension	30	2025	36

kcp

kcp

ENERGY CONSERVATION MEASURES IMPLEMENTED FY 2022-23

Energy Conservation Projects

Detail	Unit	2020-21	2021-22	2022-23	Over All (FY 20, 21, 22)
Total no.of Encon Projects	Nos.	13	13	10	36
Encon Projects with Nil Investments	Nos.	8	5	7	20
Total Investment made	Rs.Lakhs	16.4	424.2	4.7	445.3
Total Savings made	Rs.Lakhs	232.0	515.6	111.2	858.8
Electrical Energy	Lakh Units	39.89	42.72	2.23	84.84
Saved	Rs.Lakhs	215.4	230.6	14.2	460.2
Thermal Energy	МТОЕ	0.1628	0.6244	0.5765	1.3637
Saved	Rs. Lakhs	16.6	285	99.4	401.0
Impact on SEC	KWH/Ton of Cement	65.69	65.23	66.05	Introduction of high blain premium products:: SS & RHPC
	Kcal/ Kg of Clinker	682	681	680	

Energy Saving Projects Implemented in 2022-23

S.No	Energy Saving Project	Energy Saving, Lac Rs/Annam	Investment	Payback Months
<mark>Zero Inves</mark>	tment			
1	In house modification for fly ash silo extraction discharge air slide modified and replaced blower motor from 5.5kw to 3.7kw	0.8	0	0
2	In house modification for CM-1 Bag house Discharge airslide blowers interconnectivity	1.5	0	0
3	In house modification for CM-2 Bag house Discharge airslide blowers interconnectivity	1.6	0	0
4	In house modification for CM-3 Flyash circuit by arranging interconnectivity of roots blowers	2.8	0	0
5	Implementation of interlock with PPC Based operation for Flyash weigh bin BF Motor to avoid idle run hrs	4.1	0	0
6	Implementation of programable logic for 4A1MS1 with 4A1BC1-to avoid idle run hrs	0.3	0	0
7	Avoided idle running hours of CM-1&2 water spray pump motor	0.2	0	0
With Inves	tment			
8	Installation of Solar Water Heaters in colony Executive Block	0.4	3.0	19
9	Replacement of Conventional Lights with LED Lights	0.18	1.50	09
10	Fuel Savings by Improvement of Cooler Recuperation Efficiency in Line- 1 (Lower Cooler Recuperation Efficiency)	99.4	0.20	01
	Total- Rs. In Lac	111.28	4.7	

CP

Energy Saving Projects Implemented in 2021-22

S.N	o Energy Saving Project	Energy Saving, Lac Rs/Annam	Investment	Payback Months
Zer	o Investment			
1	Power Savings attained by changing motor connection in auxiliary Cooling Tower Fans	0.79	0	0
2	Fuel Savings by Improvement of Cooler Recuperation Efficiency in Line-2 (Lower Cooler Recuperation Efficiency)	406	0	0
3	Fuel Savings by Improvement of TA Temperature in Line-2 (High Temperature drop across TA duct)	75	0	0
4	Fuel Savings by Improvement of Cooler Recuperation Efficiency in Line-1 (Lower Cooler Recuperation Efficiency)	461.6	0	0
5	Fuel Savings by Improvement of TA Temperature in Line-1 (High Temperature drop across TA duct)	134.1	0	0
<mark>Wit</mark>	h Investment	1077.49		
6	Installation of Solar Water Heaters in colony A5,E3 and Executive Blocks	0.6	9.0	15
7	CM-3 Booster fan and Hot air duct Installation	32.85	416.00	13
8	Replacement of Conventional Lights with LED Lights	0.28	1.40	05
9	Optimization of Packer-1&2 Bags Cleaning Blower	0.61	0.10	01
10	Optimization of Process Cooling Tower by keeping AHU-CT bypass	0.62	0.10	01
11	Optimization of Flyash tanker Unloading Compressor	3.75	0.60	01
12	Raw Mill-2 Fan inlet duct modification	1.18	0.10	01
13	Installation of Level sensor in Cement mill-3 reject hoppers	2.37	0.90	04
	Total Rs. In Lac	42.26	428.2	

INNOVATIVE PROJECT

1. Implementation of programable logic for 4A1MS1 with 4A1BC1-to avoid idle run hrs

Before:

- Magnetic separator 4A1MS1 was running without interlock with 4A1BC1 belt conveyor.
- Idle running hours: 2.0hours/Day.

After:

- Implementation of Programmable logic to 4A1MS1 with 4A1BC1 belt conveyor.
- Reduced idle running hours: 2.0hours/Day.

Benefit:

- Reduced idle running hours: 2.0 hours/day
- Power consumption reduced: 20KWH/day
- Cost of unit power: Rs. 6.40/-
- Cost savings per year: 20KWh/dayx300 daysxRs.6.4=Rs.38,400/-

2. In-house Modification of Flyash Silo Extraction Discharge air Slide blower

Fly ash silo extraction discharge air slide blower modification. Replaced Blower from 5.5kw to 3.7kw

Air flow required for existing air slide:

Air slide details = 400 mm X 2.5 mtr. No. of boxes = 2 Nos. Air flow = Area*air velocity = 0.4*5*2.0*60 = 180 m3/hr = 180*1.25 (safety factor) =225m3/hr (Required volume =300 m3/hr) > Before changing 5.5 kw Blower, motor taking load =2.87 kw > After installed 3.7 kw blower, motor taking load =2.29 kw > Power saving = 0.58kw > Per month cost saving = 0.58*6.4*24*30 =Rs. 2,505/-Annual power saving cost = Rs.30,067/-

KCP

3. In house modification for CM-1 Bag house Discharge airslide blowers interconnectivity

Before Modification 541AB5 & 541AB4 Blowers separate air lines

541AB5 Blower Motor-5.5 Kw Volume:610 M3/Hr, Pressure:0.5 Bar 541AB4 Blower Motor-3.7 Kw Volume:300 M3/Hr, Pressure:0.5 Bar

After Modification

541AB5 to 541AB4 Blowers Interconnected air lines

541AB5 Blower Motor-5.5 Kw Volume:610 M3/Hr, Pressure:0.5 Bar

3. In house modification for Cement Mill-1 Bag house Discharge airslide blowers discharge lines interconnectivity

4.ESP Hybrid filter D.P Purging system Optimization in CPP

Before

Auto purging system all timer panels starts when DP reaches 120mmwc & stops 90mmwc.

Compressor Run Hours/Day:19 Hrs Motor KW:75

	<u> </u>	<u>After</u>	
S no	Timer panels	ON Purging	OFF Purging
1	Panel-1	≥90 mmwc	≤85 mmwc
2	Panel-2	≥80 mmwc	≤75 mmwc
3	Panel-3	≥70 mmwc	≤65 mmwc
4	Panel-4	≥60 mmwc	≤50 mmwc

Timer panels operate at individual settings independently

Compressor Run Hours/ Day: 17Hrs

Description	UoM	Savings
Compressor loading hours save	Hrs/day	2
Power saving	Kwh/day	130
Power savings @ Rs.8.00/KWh	Rs./day	1040
Power saving	Kwh/year	47,450
Total Savings per anum	Rs.in Lac.	3.7
Investment	Rs	NIL
Return on investment	Month	Immediately

5.Conversion of IAC Compressor star-delta to VFD in CPP

DESCRIPTION	UOM	BEFORE	AFTER	REMARKS
Power Consumption	kwh/day	2070	1680	
Investment	Rs	Ni	I	75 Kw IAC air
Power saving	Kwh/day 390 compres		modified from star	
Per day saving @8.0/kwh	Rs./day	312	20	- delta to VFD,
Power saving	kwh/year	1,42,	350	used existing
Savings per year	Rs in Lac.	11.	38	investment.
Return investment	Months	Immed	iately	

UTILIZATION OF RENEWABLE ENERGY

Solar Energy Utilization

Solar Street lights

INVESTMENT MADE: 6.0 LAKHS SAVING: 1.0 LAKHS/ANNUM

Solar Water Heaters for Colony – 150 Flats

NVESTMENT MADE: 8.5 LAKHS SAVING: 6.0 LAKHS/ANNUM

Solar Water Pump at Mango Garden

INVESTMENT MADE: 5.0 LAKHS SAVING: 1.2 LAKHS/ANNUM

Solar Fencing around the Residential Colony

Green Power Energy Utilization

RPP Obligation: 2022-23

	RPPO FY	2022-23
Total Energy Co	onsumed fro	om CPP+IEX:41718 MWH
Description	S.R. Leswis	
Total RPPO for FY 2022-23	18%	
Non- Solar RPPO	10.50%	
Solar RPPO	7.50%	
Non-Solar		
Non- Solar REC-No	4380	
By hydel Wheeling Energy Substitution Non-Solar RPPO	-4 300	By hydel Wheeling Energy Substitution Non-Solar RPO 100%
Solar	-4,390	
Solar REC-No	3128	
By purchase of GDAM Power form IEX fulfilled Solar RECs	619	
Solar RECs to be fulfilled	2509	
Cost of Each Solar REC	2300	Rs/REC
Solar REC Cost	57,70,700	Rs/
Non Solar REC Cost	0	Rs/
Total Cost for RPPO to be incurred	57,70,700	Rs/

Certificate of Purchase of Renewable Energy in Green-Day Ahead Market

For the Month of :	January-2023
Portfolio Name:	The_K_C_P_Limited_VJA_3035

Issued on : 01/02/2023

kcp

This is certified that The_K_C_P_Limited_VJA_3035 has purchased 111.42 MWh (at regional periphery) of Renewable Energy for the period 01/01/2023 to 31/01/2023 through Indian Energy Exchange Limited in Green-Day Ahead Market.

Solar	Non-Solar	Hydro	Total
(in MWh)	(in MWh)	(in MWh)	(in MWh)
0.05	111.37	0	111.42

This certificate represented hereby is issued on non-transferable and non-tradable basis and shall be held subject to Orders and Regulations of Honorable Central Electricity Regulatory Commission as amended from time to time and the Bye-laws, Rules and Business Rules of Indian Energy Exchange Limited.

Amit Kumar Sr VP Market Operations

*Computer generated report signature not required.

Utilization of Green Fuel

GREEN HOUSE GAS Emissions

- Battery operated vehicle inside the plant for internal people transportation
- Reducing the lead distance of transporting the cement by selecting the nearest distance either from UNIT-I or UNIT-II Cement manufacturing units.
- Reduction of NOx emission levels by adoption of newer technologies like installation of low NOx pyro jet burner along with long pre-calciner with pyro top supplied by Humboldt Wedag.
- Utilization of fly ash to the maximum permissible extent and promotion of higher PPC volumes to the maximum extent.
- Following Reverse Logistics for transportation of Cement and bringing Coal, Gypsum and Additives.

Miyawaki Plantation performed in 2 Acres

Efforts to reduce GHG emissions

- ✤ Miyawaki Plantation.
- Installation of WHR
- Installation of 4.60 MW Solar power plant
- Promoting blended cements
- Colony Street lighting & Plant lighting with LED lights.

Green supply chain

The KCP Limited Cement Unit-II, Ramakrishnapuram

Green Purchase Policy

Following standard systems & procedures defined for selecting vendors for critical equipment supplies/Major equipment and compliance of same is monitored from time to time.

- KCP is having a purchase manual with pre-defined procedure for all procurements.
- Procurement of EEF LT Motors.
- Procurement of Eco Friendly A/C package units, and VOC free paints.
- Reduce environmental footprint by means of material, energy & water conservation.
- > Ensure that asbestos products not procured in the plant.
- Sourcing raw materials from nearby sources so that travel distance is reduced and vehicle usage is curtailed thereby helping environment in minimizing carbon & sound pollution. Usage of Roads and other relevant resources like diesel/ lubs/ tyres shall also be reduced.
- > Installation of speed controllers in our new heavy vehicles.
- Procurement of Energy Efficient rated electrical appliances. All the transporters including raw materials transporters shall be advised for strict compliance of Green supply chain transport policy.

Dated: 01 April 2019

Green Supply Chain Implementations:

- 1. Creating awareness on Environmental Impacts.
- 2. Rethinking of material requirements and consumption for sustainability.
- 3. Reducing the use of hazardous material.
- 4. Improved energy efficiency Materials Purchase.
- 5. Reducing the pollution and noise levels and using recycled materials and recycling waste.
- 6. Customer preference.
- 7. Continuously compliance the environmental regulations.

CP

Manufacturing of fly ash based pavers, Hallow & Concrete bricks

Capacity: 20,000 – 25,000 no's per day (Investment: Rs. 2.0 cores.)

- The fly ash & Bed material generated in CPP are being used for the manufacturing of Hallow bricks, Concrete solid bricks & Colored Pavers.
- Recycling of CPP waste neutralization water to Cement Plant for equipment process & Cooling to avoid scaling in Pipe lines.`

Green supply chain Best Practices

Before: All bag filter fans in DOL Operation

After:

filter fans

Installed 22 No's

VFD s for all the bag

FTL Lights

150 No's LEDSwitch over 3 StarLightsRating AC

5 Star Inverter Rating

Before: IE2 Motor

After: IE3 Motor

3 Star Rating

00000

5 Star Rating

Initiatives:

- 100% safety on roads as voice enabled GPS is installed which alerts the driver on possible risk.
- ***** Ship more cement covering more distance than before.
- Better planning is ensured by the company with its stakeholders
 transporter, dealer, trucker and society.
- Vehicle service center.

Daily Energy Monitoring Report & Performance of major Equipment by team members

	Designation	Roles & Responsibilities
PLANTHEAD	Plant Head	 Drives energy saving culture in the organization. Set targets for reduction in various para inline with the vision & Energy policy. Fiscal validation of Energy saving project necessary financial allocation.
Department Heads & Energy Manager	Department Heads, Energy Manager	 Review status of Energy saving p through Daily Review Meetings. Drive employee involvement initiatives.
Section Incharges OFFICER Data Analysis Data Collection	Team Members	 Identification & Implementation of conservation projects. Drive employee involvement initiatives. Generate energy conservation ideas. Measure, Monitor & analyze section energy consumption in the factory.

	Roles & Responsibilities
and an an an and	Drives energy saving culture in the organization. Set targets for reduction in various parameters inline with the vision & Energy policy. Fiscal validation of Energy saving projects and necessary financial allocation.
	Review status of Energy saving projects through Daily Review Meetings. Drive employee involvement initiatives.
	Identification & Implementation of energy conservation projects. Drive employee involvement initiatives.
	Generate energy conservation ideas.

Energy Performance Monitoring Report-2022-23										
.NO	DESCRIPTION	Sp.Energy Consumption	Responsibility	TARGET FY 22-23	ACTUAL					
1	LS CRUSHER	Kwh/Ton of Lime Stone	CH.SRINIVASA REDDY	0.70	0.70					
2	RAW MILL-1	Kwh/Ton of Raw meal	M.SATYANARAYANA	12.00	13.21					
3	RAW MILL-2	Kwh/Ton of Raw meal	Y.KISHORE BABU	12.50	12.49					
4	KILN-1	Kwh/Ton of Clinker	P NARASIMHA RAO	18.00	18.73					
5	KILN-2	Kwh/Ton of Clinker	J V S GUNNAIAH RAJU	18.00	18.17					
6	COAL MILL-1	Kwh/Ton of Coal	P.SRINIVASARAO	15.00	15.06					
7	COAL MILL-2	Kwh/Ton of Coal	E RAMU	15.50	16.03					
8	CEMENT MILL-1	Kwh/Ton of Cement	M.RAMESH	27.00	31.03					
9	CEMENT MILL-2	Kwh/Ton of Cement	CH SURESH REEDY	27.00	30.59					
10	CEMENT MILL-3	Kwh/Ton of Cement	CH V RAMARAJU	24.50	22.45					
11	PACKING PLANTS	Kwh/Ton of Cement	P BIXAM & N S RAJU	0.65	0.56					
12	UTILITIES	Kwh/Ton of Clinker	G.MALLESH	1.7	1.76					
13	SERVICES	Kwh/Ton of Cement	MD.RAHIM	2.0	1.5					
14	HEAT CONSUMPTION	KCal/Kg of Clinker	B.YOGESWAR	675	680					
15	EXPLOSIVE ENERGY	Tons/Kg of Explosive	P.RAMAKRISHNA	9.00	9.60					

Strategies adopted for Team work & employee involvement

Kaizen & Suggestion Scheme
Cross Functional Team
Quality Circles
Chat with Unit Head
Employee Energy Score Card
Participation in Seminars
External trainings

✓ Energy Conservation week

 ✓ Safety Messages sharing in Gate meeting / monthly safety magazine
 ✓ National Safety Day Celebrations
 ✓ Safety Committee meetings
 ✓ Monthly Fun Hungama Celebrations
 ✓ Monthly Energy committee meetings
 ✓ Safety Walks

Employee Recognition at shop floor level

Section Wise Energy Scorecard & Energy Conservation projects Implementation Methodology

Energy Projects Implementation Methodology

- Identifying the potential Energy saving equipment's /Areas by Plant Engineers.
- Categorized into No investment, Low investment and High investment.
- ✤ No/Low investment project Implementation-Immediately.
- High investment projects proposals—Put up for CAPEX approval.
- Review of project implementation, Completion status.
- Reporting the benefits/savings through monitoring and reviewing the performance.

SECTION DATE 26.07 2022 KILN - 2 SEC : Kwh/Ton of clinker TARGET DAYACHIEVED MONTH AVG PH FAN 6.5 6.24 5.70 ESP FAN 0.7 0.80 0.76 RABH FAN 1.5 1.35 1.36 KILN MAIN DRIVE 1.5 4.4 4.4	EA	ENERGY SCORE CARD						
KILN-2SEC: Kwh/Ton of clinkerTARGETDAYACHIEVEDMONTH AVGPH FAN6.56.245.70ESP FAN0.70.800.76RABH FAN1.51.351.36KILN MAIN DRIVE1.52.554COOLER FANS4.54.744.99	SECTION	DATE	26.07	2022				
TARGET DAYACHIEVED MONTH AVG PH FAN 6.5 6.24 5.70 ESP FAN 0.7 0.80 0.76 RABH FAN 1.5 1.35 1.36 KILN MAIN DRIVE 1.5 4.74 54.99	KILN-2	SEC : Kwh/Ton of clinker						
PH FAN 6.5 6.24 5.70 ESP FAN 0.7 0.80 0.76 RABH FAN 1.5 1.35 1.36 KILN MAIN DRIVE 1.5 2.5 1.54 COOLER FANS 4.5 4.74 4.99		TARGET	DAYACHIEVED	MONTH AVG				
ESP FAN 0.7 0.80 0.76 RABH FAN 1.5 1.35 1.36 KILN MAIN DRIVE 1.5 1.25 1.54 COOLER FANS 4.5 4.74 4.99	PH FAN	6.5	6.24	5.70				
RABH FAN 1.5 35 36 KILN MAIN DRIVE 1.5 2.5 54 COOLER FANS 4.5 474 499	ESPFAN	0.7	0.80	076				
KILN MAIN DRIVE 1.5 2.5 54 COOLER FANS 4.5 474 499	RABH FAN	1.5	135	36				
COOLER FANS 4.5 4 14 499	KILN MAIN DRIVE	1.5	125	1 54				
	COOLER FANS	4.5	474	499				
AUX 3.3 362 364	AUX	3.3	3.62	364				
CLINKERISTION 18.00 800 17.98	CLINKERISTION	18.00	18:00	17.98				

Focus for the Energy Efficiency

- ✤ Daily Monitoring
- Trainings
- Innovative Modifications
- Periodical upgradation of new technological equipment's

Integrated Management System

IMS policy & Learning from CII Awards ...

IMS Policy

IMS Policy

(Quality, Environment, Energy and Occupational Health & Safety)

We are committed to achieve sustainable growth and continual improvement in the performance of Integrated Management System in the manufacturing of clinker and cement.

We shall achieve this by:

- · Manufacturing and supply of Clinker , Cement with consistent quality
- Protection of the environment and prevention of pollution
- Ensuring the availability of information and necessary resources to achieve IMS
 objectives and Energy targets
- Improving the energy performance related to energy efficiency, energy usage and energy consumption
- Providing safe and healthy working conditions, including elimination of hazards and risk reduction, for the prevention of work related injury and ill health
- Promoting consultation and participation of workers and their representatives
- Complying with all applicable legal and other requirements
- Implementing Technological Innovations and providing with latest equipment,
- Knowledge enhancement and upgrading the professional skills through training and motivation, and
- Integrating the management systems' requirements with business processes of KCP

Dated: 01 Sep 2020

Dr V L INDIRA DUT

Learning from CII Awards ...

- To bring in recognition to the Organisation through unique innovative practices.
- Creating platform for sharing of knowledge which takes to sustainable growth through optimum utilization of resources, diversified Quality Products, Processes and Services for all our Stakeholders.
- Understand the Industry best and implement the same in our Organisation.
- Creating a competitive edge amongst the industries through right person is assigned for the right job and that they grow and contribute towards organizational excellence
- Employee engagement & belongingness increased

Confederation of

Indian Industry

NET ZERO commitment

Roadmap For Achieving The Target Towards NET ZERO

- Proposed to install 14.0 MW Waste Heat Recovery System
- Enhancement of 4.66 MWp SOLAR PV PLANT
- Development of MIYAWAKI Plantation in -2 more Acres apart from existing 2 Acres.
- Green fuel utilization

Journey towards Green Power

THE KCP LIMITED, CEMENT UNIT-II, MUKTYALA, AWARDS RECEIVED AS ON...

- ◆ 2022: CPP has won Cll's "Excellent Energy Efficient Unit"
- ✤ 2022: CPU-II has won CII's "Energy Efficient Unit" Award
- 2021:Excellence in Sustainability Award from Manufacturing Today

CEMENT

- 2021:National Award for "Excellent Energy Efficient Unit" for the year 2020-21 from CII in Cement Sector
- 2021: National Energy Leader award for the year 2020-21 from CII in Cement Sector
- 2021:Sectorial Topper in Cement Sector by CII-SR EHS
 Excellent Gold Award 2021

- 2020: National Award for Excellence in water Management
- 2020: Bagged First Place in Sectorial and Sustainability, in recognition of best practices in Environment, Health & Safety.
- 2020: National Excellence Energy Efficient in Energy Management
- 2019: 5 Star for Excellence in EHS practices
- 2019: Excellence in Sustainability by Manufacturing Today
- 2019: National Excellence Energy Efficient in Energy
 Management

CP

THE KCP LIMITED, CEMENT UNIT-II, MUKTYALA, AWARDS RECEIVED AS ON...

- 2018-19: NCB-Excellence in the field of Energy and Environment
- * 2018: National Energy Efficient in Energy Management
- 2017-18: NCB-Excellence in the field of Energy and Environment
- 2017: National Excellent Energy Efficient in Energy Management
- 2016-17: NCB-Best Electrical Energy Performance Award
- * 2016: National Energy Efficient in Energy Management

- ***** 2016: 3 Star for Appreciation in EHS practices
- 2015: National Excellent Energy Efficient in Energy Management
- ✤ 2015: Most useful Presentation Award
- * 2014-15: NCB-Best Electrical Energy Performance Award
- 2014: National Excellent Energy Efficient in Energy Management
- 2014: National Energy Conservation Award (BEE) in Cement Sector by Government of India, Ministry of Power
- ***** 2013-14: NCB-Best Electrical Energy Performance Award

Contact Details: Sri.V.Madhusudana Rao Vice President-Operations Email: cement.muktyala@kcp.co.in Ph.No:08654-296006/7/8

Thank You

Save Energy & Environment

kcp